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Definition of a Circulant Graph

Definition
Circ(n; S) is the digraph whose vertices are the elements of Zn,
with m adjacent to m + s iff s ∈ S.
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Definition of a Cayley Graph

Definition
Cay(G ; S) is the digraph whose vertices are the elements of G ,
with g adjacent to gs iff s ∈ S.



Definition of a Cayley Graph

Definition
Cay(G ; S) is the digraph whose vertices are the elements of G ,
with g adjacent to gs iff s ∈ S. For a graph, we require S = S−1,
e 6∈ S.



Automorphisms from the group action

Notice that for any h ∈ G , left-multiplying every vertex by h is a
graph automorphism. This action is called the left translation by h.
The group of all such actions is called the left-regular
representation of G .

Observe
that if α is a group automorphism of G , then α determines an
isomorphism from Cay(G ; S) to Cay(G ;α(S)). This isomorphism
is a graph automorphism of Cay(G ; S), precisely if α(S) = S .

Thus, every Cayley graph has a natural, affine group of
automorphisms that comes from the group action: GLoAut(G ; S).



Normal Cayley graphs

Definition (M.Y. Xu)

A Cayley (di)graph Γ = Cay(G ; S) is normal if the left-regular
representation of G is normal in Aut(Γ).

Theorem (Godsil, 1981)

A Cayley (di)graph is normal if and only if its automorphism group
is GL oAut(G ; S).

Thus, normal Cayley graphs are Cayley graphs in which every
automorphism is one of the natural automorphisms that arises
from the group action.



When are these affine transformations all we get?
For every group G with |G | > 3, there is some Cayley graph that
has automorphisms that don’t come from the group action: the
empty graph, since Sn is not affine for n > 3.
Obvious obstruction: connectedness.
Not (in general) a group automorphism:

α triviale α nontrivial

The complete graph is also a problem. Is there a natural condition
we can make on graph automorphisms, that ensures that all Cayley
graph automorphisms satisfying this restriction, are affine?



Notice...
there is a natural colouring of the edges of Circ(n; S) (or more
generally of Cay(G ; S)) by the elements of S .
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Definition
We say that an automorphism of a graph is colour-preserving if it
fixes each of the colours given in a particular colouring.
We say that an automorphism of a graph is colour-permuting if
whenever two edges have the same colour, their images also have
the same colour. Note that their images may not be the same
colour as the original colour. 0
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Definition
We say that an automorphism of a graph is colour-preserving if it
fixes each of the colours given in a particular colouring.
We say that an automorphism of a graph is colour-permuting if
whenever two edges have the same colour, their images also have
the same colour. Note that their images may not be the same
colour as the original colour. 0

1

2

3

4
5

6

7

8

9



Observe
that if α is a group automorphism of G , then α(gs) = α(g)α(s),
so the colour s maps to the colour α(s). Thus, such an
automorphism is at least colour-permuting. Eg.
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Also observe that left translation by any element of G is
colour-preserving. So the graph automorphisms that come from
the left-regular representation of G , are all colour-preserving. Eg.
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Also observe that left translation by any element of G is
colour-preserving. So the graph automorphisms that come from
the left-regular representation of G , are all colour-preserving. Eg.

1

0

9

8

7
6

5

4

3

2



Also observe that left translation by any element of G is
colour-preserving. So the graph automorphisms that come from
the left-regular representation of G , are all colour-preserving. Eg.
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Proposition

In a connected Cayley digraph Cay(G ; S), any colour-permuting
automorphism α that fixes the vertex e, is an automorphism of G .

Proof.
I will show that for any g ∈ G and s ∈ S , α(gs) = α(g)α(s).
Suppose that the arc from g to gs is coloured red, so the arc from
e to s is also red.

If red arcs map to blue arcs, then (e, α(s)) and
hence all arcs formed by α(s) are blue. So α(g)α(s) is the end of
the unique blue arc from α(g).
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Notice...
in a graph (rather than a digraph), this proof won’t work
immediately, because α(s) could be s ′ or s ′−1.
So α(st) could be any one of

• s ′t ′;

• s ′t ′−1;

• s ′−1t; or

• s ′−1t ′−1.

However, the proof will work if every element of S is an involution.

Also...
The condition of connectedness is necessary.



Question [Conder, Pisanski, Žitnik]

For circulant graphs, is a colour-permuting automorphism of the
graph that fixes the identity vertex, necessarily an automorphism of
the group? (i.e. a multiplier)



Question [Conder, Pisanski, Žitnik]

For circulant graphs, is a colour-permuting automorphism of the
graph that fixes the identity vertex, necessarily an automorphism of
the group? (i.e. a multiplier)

This question arose in the context of studying the structure and
automorphism groups of GI-graphs, which are a generalisation of
both generalised Petersen graphs; and the Foster census I -graphs,
but seemed of interest in its own right.

Answer [M., 2012+]

Yes (for connected circulants).



Z4 × Z2

Let’s start by studying the smaller class of colour-preserving
automorphisms.

Theorem (Verret, 2014)

There is a Cayley graph on Z4 × Z2 with a colour-preserving graph
automorphism that is not a group automorphism:
Cay(Z4 × Z2; {10, 30, 11, 31}).
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Definition of CCA

Definition
A Cayley graph is CCA (has the Cayley Colour Automorphism
property) if all of its colour-preserving automorphisms are “affine,”
i.e. composed from a group automorphism of G and left
translation by an element of G (an element of the left-regular
representation of G ).

Definition
A group G is CCA if every connected Cayley graph on G is CCA.

So we have seen:

• cyclic groups are CCA;

• Z4 × Z2 is not CCA.



CCA and direct products

Theorem
If G is not CCA, and H is any group, then G × H is not CCA.

Proof.
Let Γ = Cay(G ; S) be a non-CCA Cayley graph on G . Let
Γ′ = Cay(H; T ) be any Cayley graph on H. Then Γ � Γ′ is a
Cayley graph on G × H. And Γ � Γ′ is not CCA.



CCA and direct products

Partial converse
If G and H are CCA and gcd(|G |, |H|) = 1, then G × H is CCA.

Our examples of Z4 × Z2 and cyclic groups show us that the
condition gcd(|G |, |H|) = 1 is necessary.

Having a subgroup that is not CCA is not sufficient to ensure that
a group is not CCA. In fact, Z8 × Z2 is CCA.



Z2n × Z2 × Z2, n ≥ 2

Theorem
Cay(Z2n × Z2 × Z2; {±(1, 0, 0),±(2n−2, 1, 0),±(2n−2, 0, 1)}) is
not CCA when n ≥ 2.



Abelian groups

Theorem
An abelian group is CCA if and only if it does not contain Z4 × Z2

or Z2n × Z2 × Z2 as a direct factor.
In particular, any abelian group whose order is not divisible by 8 is
CCA.



Nonabelian groups

Definition
A generalised dihedral group D over an abelian group A is the
group 〈A, τ〉, where τ2 = e and aτ = τa−1 for every a ∈ A.

Theorem
A generalised dihedral group over the abelian group A is CCA if
and only if A is CCA.

Proof is similar to digraph proof. Notice this means that dihedral
groups are always CCA.



Nonabelian groups - non-CCA

Definition
Let A be abelian of even order and choose an involution y of A. A
generalised dicyclic group over A is the group 〈x ,A〉, where x2 = y
and ax = xa−1 for every a ∈ A.
A semidihedral group of order 16n is 〈x , a〉, where a8n = x2 = e
and xa = a4n−1x.

Theorem
The following groups are not CCA:

• generalised dicyclic groups;

• semidihedral groups.

The graphs look a lot like our previous examples.
In particular, there is a non-CCA group of order 4n for every n ≥ 3.



A very different example

Theorem
Let G = 〈a, b|a3 = b3 = e, (ab−1)2 = b−1a〉, the nonabelian group
of order 21. Then Cay(G ; {a±1, b±1}) is not CCA.
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Some broad results

Theorem
The wreath product Zm o Zn is not CCA when m ≥ 3 and n ≥ 2.

Theorem
A non-CCA group of odd order has a section isomorphic to at least
one of:

• the nonabelian group of order 21,

• or a semi-wreathed product A oα Zn, where A is a nontrivial
elementary abelian group (of odd order) and n > 1.

Theorem
There exists a non-CCA group of order n if and only if:

• n ≥ 8; and

• n is divisible by at least one of 4, 21, or pqq.



Strongly CCA

Question
What about colour-permuting automorphisms? There are more of
them, so maybe some of them are not affine, even if all of the
colour-preserving ones are?

Definition
A Cayley graph is strongly CCA if all of its colour-permuting
automorphisms are affine. A group G is strongly CCA if every
connected Cayley graph on G is CCA.

So we have seen:
• cyclic groups are strongly CCA; and
• any group that is not CCA, is not strongly CCA.



Are strongly CCA groups different from CCA groups?

Theorem
An abelian group is strongly CCA if and only if it is CCA.

Theorem
A group of odd order is strongly CCA if and only if it is CCA.

Proof.
It is clear that a strongly CCA group is CCA. Conversely, suppose
G is CCA, and let Γ be any Cayley graph on G . Then G is normal
in the group of colour-preserving automorphisms of Γ, since these
are the affine transformations. In fact, G is characteristic in this
group because it is the largest odd-order subgroup (details
omitted). Also, the colour-preserving automorphism group is
normal in the colour-permuting automorphism group, so G is
normal in the colour-permuting automorphism group. Thus Γ is
strongly CCA, so G is strongly CCA.



Generalised dihedral groups

Theorem
Let A be any abelian group. The generalised dihedral group D over
A× Z2 is not strongly CCA. In particular, let S be any generating
set for A. Then Cay(D; S ∪ {(0, 1), τ} is not strongly CCA.
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Recall
The same construction as before shows that if G is not strongly
CCA and H is any group, then G × H is not strongly CCA.



Linking Rings Structures



Linking Rings Structures

Definition (Potočnik, Wilson)

An LR (Linking Rings) structure is a 4-valent vertex transitive
graph, whose edges have been coloured with 2 colours, red and
green (say) such that every vertex is in a red cycle and a green
cycle; the green cycles all have some fixed length k1 and the red
cycles all have some fixed length k2; there are “swappers” at each
vertex (automorphisms that fix the red/green cycle containing that
vertex pointwise, while flipping the green/red cycle containing that
vertex); and the group of colour-preserving automorphisms is
vertex-transitive.



Linking Rings Structures

Why LR structures?

They are closely related to semisymmetric graphs of valency 4.
(Via the partial line graphs construction)



Linking Rings Structures

Relationship to our problem

An important method of constructing LR structures is via Cayley
graphs. If the generators in the connection set are not involutions,
then use the natural colouring. If some of the 4 generators are
involutions, then some of the “natural” colour classes get merged.
It is not easy to determine the existence of “swappers” in general;
“Cayley swappers” are swappers that are colour-preserving group
automorphisms.



Some Questions that Remain

Question
What other groups or graphs are CCA? Strongly CCA? Are graphs
of “small” valency CCA, even on non-CCA groups?

Question
Are there other natural colourings for which we could ask this
question? E.g. edge-orbits of a vertex-transitive action on a
non-Cayley graph?



Thank you!
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